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Stability of the formation of the chevron structure

N. UL ISLAM, N. J. MOTTRAM and S. J. ELSTON*
Department of Engineering Science, University of Oxford, Parks Road,

Oxford OX1 3PJ, UK

(Received 23 December 1998; accepted 4 February 1999 )

A simple model of the formation of the chevron structure and tilted layer structure in the
smectic C liquid crystal phase from the bookshelf structure in the smectic A phase is con-
sidered. Energetic considerations of this system indicate that in the absence of layer pinning
forces at the surface, a transition to the tilted structure is expected. However, combining the
model with ẁeak’ surface positional anchoring e� ects allows the chevron structure to form.

1. Introduction structure which allows us to investigate the relation
between the chevron and tilted layer structures.Chevron structures in liquid crystal cells ® lled with

tilted smectic material were discovered by Rieker et al.
using X-ray scattering techniques [1] . Their existence 2. The model
was con® rmed by the discovery of a pinned point in the Here we make the assumption that any changes in
centre of a device by Elston and Sambles using guided the smectic cone angle must be accompanied by changes
mode techniques [2] . The conventional argument for in the smectic layer tilt angle and therefore that there is
chevron formation asserts that the chevron structure no absolute layer compression/dilation. The only allowable
comes about due to the need to avoid the formation of change in layer thickness is that accompanied by changes
defects and therefore satisfy the curl constraint (= 9 a=0, in the cone angle, h. Thus, the natural or equilibrium
where a is the smectic layer normal vector) while layer thickness decreases as one cools the material from
reconciling the mismatch between the smectic layer the smectic A into the smectic C phase. If we assume
spacing in the cell surface plane and the layer thickness that within a cell the smectic layer number is strictly
in the bulk. When crossing the smectic A to smectic C preserved (i.e. no reorganization of layers and no defects
phase transition, an increasing molecular tilt angle in the layering), and also that the layers start from a
(cone angle h) results in a corresponding decrease of the perfect bookshelf structure in the smectic A phase, i.e.
smectic layer thickness. The resulting mismatch between they start out being perpendicular to the cell surfaces
the layer thickness values at the surfaces and within (as is commonly the case for SSFLC), the above assump-
the bulk was explained in terms of the formation of tions lead to a tendency for the layers to tilt in order to
structures known as chevrons. Recently Cagnon and retain the layer packing density wave.
Durand added weight to this argument when they As illustrated in ® gure 1 a number of possible smectic
showed that the smectic layer positioning is f̀rozen’ in layer structures are consistent with this. Figure 1(a)
the smectic A phase at the cell surfaces [3] . shows the simplest of these, a tilted layer structure.

The above argument would seem to imply that the For this to form, the layers would have to s̀lip’ along
formation of a symmetric chevron structure within a the cell surfaces (on one side of the device at least).
surface stabilized ferroelectric liquid crystal (SSFLC) cell Figure 1(b) shows the symmetric chevron structure. This
was inevitable. However, this is not always seen to be structure is commonly, though not exclusively, observed
the case. Tilted layers are observed in the smectic C in smectic C liquid crystal cells. For this to form, a layer
phase as are asymmetric chevrons, where the chevron kink (or localized bend) must form as the smectic A
tip is not midway between the two cell surfaces [4] . In to smectic C phase transition is crossed. Figure 1 (c)
fact, it is not very clear what decides whether a tilted illustrates the less frequently observed asymmetric
layer structure will form in preference to a chevron chevron structure, which is thought to be less common
within a particular cell as the SmC phase is entered. In due to the smectic layer slip required at the surface. It
this paper we consider a simple model of the chevron is evident that this can be viewed as being a combination

of (or state between) the cases shown in ® gures 1(a)
and 1(b). Finally, ® gure 1(d) shows a multiple kinked
structure (or multiple chevron). The presence of more*Author for correspondence. e-mail: steve.elston@eng.ox.ac.uk
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1060 N. Ul Islam et al.

(4) The director remains in the plane of the alignment
direction.

This means that the layer structure at the cell surfaces
within a SSFLC cell in the SmC phase is the same as
that at the chevron cusp. The chevron cusp behaves, in
e� ect, as an internal surface. While at ® rst these may
seem to be somewhat over-constraining assumptions,
they do allow an elegant solution to the problem.
Further, they are not entirely unphysical. Observation
of switching in chiral smectic C liquid crystal devices
shows that the chevron cusp can behave as an internal
surface, and it is reasonable to assume that the smecticFigure 1. Structures which could form when the layers tilt in a
layer structure here is similar to that at the physicalsmectic liquid crystal cell. (a) A simple tilted layer structure;
surfaces of a device. The structure of the chevron cusp(b) a symmetric chevron structure; (c) an asymmetric

chevron structure; (d ) a multiple chevron structure. is then taken to be governed by a balance of elastic
forces due to distortions of the director ® eld, and forces
brought about by deviations of the cone angle from itsthan one energetically expensive kink is thought to cost
equilibrium value in the bulk. As is conventional, wetoo much energy for this to be a stable structure, and
use a one constant approximation when describing thewe will not consider it further here, but will discuss it in
former. The free energy density due to the latter isdetail in a future publication.
expressed in terms of a Landau expansion in even powersWe can see that the structures shown in ® gures 1 (a)
of h, neglecting terms of O(h6 ) [6] . This gives a freeand 1 (b) can evolve into each other by passing through
energy density, f , expression.stages like that in ® gure 1(c). There is an alternative,

namely, that one àrm’ of the chevron reorients itself.
This would however require a bulk change in the f = f0 +

a

2
h2 +

b

4
h4 +

K

2
[(= ¯ n)2 + (= 9 n)2] . (1)

smectic layer thickness, which is highly unlikely, and so
we discard it as a possible mechanism for the transition This can be simpli® ed in two ways. Firstly, as noted
between the two structures. above, we assume that the director distortion occurs in

In order to model these structures and the relation the plane of the smectic layer normal. This allows the
between them, we need some way of modelling the director distortion term to be reduced from
energetics of the chevron cusp, and of layer slippage. In
the next section we present the former. f e la s =

K

2
[(= ¯ n)2 + (= 9 n)2] (2)

3. Chevron cusp and surface structure to
There have been a number of models advanced to

describe the chevron structure, and we use the simplest f e la s =
K

2
Aqy

qz
B2

(3)
of these which keeps the director in the plane of the
smectic layer normal. The following assumptions are where y is the director tilt angle. Furthermore, for small
made in our model: layer and director tilt angles, we can write

(1) The chevron cusp is assumed to be a localized
y#

h

Ó A
(4)bend in the layering structure, as opposed to the

discontinuous kink of the original Clark and
Rieker model [5] . This is a necessary assumption where
due to the simple model of the chevron structure
we are using. As the director is kept in the plane Ó A = A1 Õ

do

ho

B Õ 1

(5)
of the smectic layer normal, a kink in the smectic
layer structure is not allowed because it would where do /ho is the ratio of smectic layer tilt to smectic
violate the local director continuity. cone angle in equilibrium. Secondly, the Landau

(2) At the chevron cusp, the bend is mediated through terms can be conveniently re-expressed in terms of the
a reduction in the cone angle, h, to zero, due to equilibrium cone angle, he ,layer dilation forces.

(3) The surface alignment is retained in the SmC
f L d G = f ¾

0 +
b

4
(h2 Õ h2

e )2 (6)
phase.
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1061Chevron structure Ð stability of formation

where f ¾
0 = f0 Õ bh4

e /4, and equation (6) is obtained by we can also assume that in the vicinity of the phase
transition the actual cone angle is small, i.e.minimizing the Landau term when h = he . This allows

us to work with the natural (and easily observed) he as
h2 %h2

e . (13)
a parameter, where he is the equilibrium director tilt

This allows equation (8) to be rewritten as,angle within the cell, at a given temperature, T, in the
SmC phase. Thus, we can write the free energy density
as,

K

A
Aq2 h

qz2
B+bh2

e h = 0. (14)

Further we assume that the distortion of smecticf = f ¾
0 +

K

2A
Aqh

qz
B2

+
b

4
(h2 Õ h2

e )2 . (7)
layers has two fundamental modes, corresponding to
the possibilities of tilted layer structures and chevronMinimizing this is equivalent to solving the relevant
structures, respectively, given byEuler± Lagrange equation:

h = ho sinAp
z

d
B (15)K

A
Aq2h

qz2
B Õ bh(h2 Õ h2

e )= 0. (8)

for tilted layers, andThe boundary conditions require that h is zero at the
cell surfaces and the chevron interface, and de® ning

h = ho sinA2p
z

d
B (16)z = 0 at one surface and z = d at the other gives

h|0 , d = h|d/2 = 0. (9)
for the chevron structure. We can now estimate threshold

In order to model the asymmetric chevron and tilted values for he that govern the formation of these structures.
layer formation process, the analysis of equation (7) has These are given by:
to be modi® ed to include some parameter measuring
the position of the chevron cusp. This is most easily ht i l t

e =
p

d
A K

Ab
B1 /2

= 0.00736 (17)
done by including a constraint that ® xes the total layer
displacement across the thickness of the cell. for the tilted layer case, and

As we have assumed for simplicity that it is valid to
use small angle approximations for h and d, we can

hc h e v
e =

2p

d
A K

Ab
B1 /2

= 0.01472 (18)write (tan d)# d3 h. We can then build in a constraint
that

for the chevron case. The numerical values are for the
suggestedparameters of d =1mm, K =10Õ 11 N, A =400/9P d

0

tan d dz = total layer displacement. (10) and b = 4.1 Ö 104 N mÕ 2 [7] . These threshold values
determine the boundaries that separate di� erent types

This is equivalent to a constraint on the integral of h of behaviour. There are three such regimes. Firstly, for
over the thickness of the cell he < ht i l t

e , the only energetically stable structure consists
of untilted uniform layers, commonly referred to asP d

0

h dz = constant (11) the b̀ookshelf ’ structure. A horizontal shear can force
the smectic layering to tilt, but this will be at the cost

and can be included by adding a Lagrange multiplier of an increase in the energy of the system. Using a
term to equation (7) of the form lh. This then leads to numerical solution to equation (12) this is illustrated in
a modi® ed Euler± Lagrange equation of the form ® gure 2 (a) using the dashed line to represent the case

when he = 0.0 rad.K

A
Aq2 h

qz2
B Õ bh(h2 Õ h2

e )+l= 0. (12) For equilibrium tilt angles in the range ht il t
e <he<hch e v

e ,

the bookshelf structure againoccurs under the constraint
of zero net layer displacement. However, in this case aThe solution of this equation is then required under the
total displacement imposed on the layers results in aboundary conditions of equation (9).
reduction in the energy of the system. This is because
the tilted layer con® guration has a lower energy than the4. Structure formation near the SmA± SmC phase

transition uniform untilted bookshelf structure. The dashed line in
® gure 2(b) shows this for the case when he = 0.01 rad.We start by considering the stability of the bookshelf

structure to the formation of tilted layers of chevrons When he > hc h e v
e , the lowest energy zero displacement

structure is the chevron type structure. This means thatnear the smectic A to smectic C phase transition. This
allows us to set l= 0 (for the bookshelf structure), and the bookshelf structure is unstable to perturbations
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1062 N. Ul Islam et al.

Figure 2. (a) The energy as a func-
tion of total displacement for
the limiting case of a very small
smectic tilt angle (he =0.0). The
dashed line shows the case
without any layer positional
anchoring energy and the con-
tinuous line includes such an
e� ect as discussed in the text.

(a)

(b)

which retain zero total displacement across the cell, and This is because the energy is symmetric for displacements
of the layers about this point.under this constraint the chevron structure forms. Once

again, if a horizontal shearing displacement is applied For a typical cell thickness of 1mm and, for example,
a smectic cone angle of 0.05 rad, the behaviour is shownto the structure, the resulting tilted layer structure has

a lower energy. For example, in ® gure 3 we show the in ® gure 4. The energy density used in the model,
equation (7), can be integrated to give a chevron energycase for a larger cone angle (he ~0.025 rad), correspond-

ing to a temperature a little below TA C . Figure 3(a) E~0.01132 Ö 10Õ 6 N mÕ 1 . For the tilted layer structure
we get E~0.02264 Ö 10Õ 6 N mÕ 1 . It should be notedshows the evolution of the smectic tilt angle pro® le (cone

angle) as the total displacement is increased, and the that for both these cases, the same parameters have been
used as in the above analysis. We can also see incorresponding layer structures are shown in ® gure 3 (b),

where the evolution from a chevron structure to a tilted ® gure 4 (c) that the energy is approximately constant for
a wide range (for this case, ~0.02mm) of displacements.structure is clear. The total energy as a function of

displacement is shown in ® gure 3(c). It should be noted This region corresponds to the case of asymmetric
chevrons where the bend in the layers, corresponding tothat the slope of the energy± displacement curve is always

zero for chevron cusps that are situated in the centre of the chevron cusp in our model, does not extend out to
either of the cell surfaces. However, for the case wherethe cell, indicating that this symmetric structure is indeed

at a stationary point (as we would intuitively expect). the cusp has been displaced far enough to come within

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1063Chevron structure Ð stability of formation

(a)

(b)

(c)

(a)

(b)

(c)

Figure 4. The evolution of (a) the tilt angle pro® le, (b) theFigure 3. For a smectic tilt angle of he =0.025 rad, the
equilibrium chevron structure at zero displacement is layer structure and (c) the energy as the total displacement

is increased for a smectic tilt angle of he =0.05 rad. Noteincreased. As this occurs, the tilt angle pro® les evolve as
shown in (a), the layer structure evolves as shown in (b), the appearance of a ® rst order transition in the energyÐ

this will be discussed in detail in a further publication.and the energy evolves as shown in (c).

leads to the following:a correlation length of the cell surfaces, the energy
rapidly falls o� to the value for a tilted layer structure,

h = he tanhCAh2
e bA

2K
B1 /2

zD (19)as the chevron cusp merges with the cell surface to
produce a tilted layer structure.

We can also obtain an analytic solution in the region where, for each case, z is measured away from the
h = 0 point.of the chevron cusp and surfaces, which in this case
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1064 N. Ul Islam et al.

To obtain the energy of the chevroncusp, we substitute mental study in which a shear was applied to a liquid
crystal material in the SmA phase. This was done byequation (19) back into equation (7) to get:
applying a tangential stress to one of the plates of a
liquid crystal cell. The resulting lateral movement of onef Õ f ¾

0 =
1

2
bh4

e sech4CAh2
e bA

2K
B1 /2

zD. (20)
of the cell surfaces was recorded, and used to reconstruct
the forces driving it. They observed a transmittedIntegrating this between z = 0 and z = 2 , gives the
shear stress that had a periodic component, with theenergy of the chevron cusp for one àrm’ of the chevron:
periodicity equal to the thickness of the smectic layering.
This led them to conclude that the observed e� ects

E (he )=
2

3
AbK

2A
B1 /2

h3
e . (21) were due to surface melting of the smectic layering, and

they measured the corresponding smectic positional
The total energy of the tilted layer structure is then going anchoring energy as being ~10Õ 9 N mÕ 1 .
to be twice that given by equation (21) due to the two Although the study of the melting process carried out
surfaces, and the total energy of the chevron structure by Cagnon and Durand has been extended by Elston
will then be four times that given by equation (21), due and Towler to show that the melting of the smectic order
to the additional energy cost of the cusp. layering order parameter under shear stress can be a

Substituting our chosen typical values for the para- complex process [8] , for the purposes of the analysis
meters in equation (21) will allow us to estimate the presented here, we will employ a simple approximation
energy of the various di� erent structures. We again use based on the Cagnon and Durand result. We assume
K ~10Õ 1 1 N, and b~4.1 Ö 104 N mÕ 2 and he ~0.05 rad. that the smectic layer slip takes place through a periodic
Then we can estimate the energy of the tilted layer near-surface melting of the smectic layering. This can
structure as being E~0.01132Õ 6 N mÕ 1 , while that of be expressed as a periodic smectic layer positional
the chevron is E~0.02264 Ö 10Õ 6 N mÕ 1 , leading to a anchoring energy, which we take to be:
di� erence DE~0.01132Õ 6 N mÕ 1 . These compare well
with the numerical values given above.

Ep o s = Em ax sin2 Ap
D

ds

B (22)While giving us an idea about the energies involved,
the above analysis give us insu� cient information to
determine the stability or otherwise of the chevron where Em ax ~10Õ 9 N mÕ 1 (as measured by Cagnon and
structure. This is because we have not said anything as Durand), D represents the smectic layer displacement, and
yet about the mechanism by which a chevron structure ds is the smectic layer thickness (typically ds ~2.5nm).
may change into a tilted bookshelf, i.e. we have treated This energy will exist in addition to that already
the total layer displacement as a constraint when solving shown to be associated with the displacement of the
the problem. chevron cusp from the centrosymmetric position that

occurs when a tilted layer is being formed from an
existing chevron. For example, adding the energy contri-5. Surface positional anchoring

It is clear from the preceding discussion that layer bution due to equation (22) to the energy± displacement
functions that we have already investigated, gives us anpositional energy would signi® cantly alter the behaviour

of the system, including which structures form the energy curve similar to that shown in ® gure 5.
We have seen that the uniform untilted structure isground state at di� erent temperatures and whether

transitions between the two types of structure (tilted the stable, lowest energy solution for he < ht i l t
e . Now,

however, consideration of the energies shown using thelayers and chevrons) take place and under what circum-
stances. It is also evident that if there is no positional continuous lines in ® gure 2 (a) and 2(b) (which include

the e� ect of the layer positional energy due to surfacelayer pinning energy, then tilted layers will be the most
commonly occurring structure since they are energetic- interactions) shows that the net zero displacement

structure becomes trapped in the minimum there. Thisally favourable. For he < ht i l t
e , we have a bookshelf

structure, but as he > ht i l t
e , a transition always occurs means that for the regime, ht i l t

e < he < hc h e v
e , the bookshelf

structure is stabilized by the layer positional energy.to the tilted layer structure as there is no barrier to its
formation, as can be seen from the dashed line in Although the tilted layer structures are at lower energy

levels, the energy barrier due to the positional order at® gure 2(b). Once this structure forms, it remains, with
the layer tilt increasing monotonically as he increases, the cell surfaces prevents its formation by layer slippage.

Once he > hc h e v
e , the chevron structure forms. Oncebecause the tilted structure is always of lower energy

than other structures. again, however, its possible transition to the tilted layer
structure is blocked by the surface pinning energy, asThe surface pinning forces have been investigated by

Cagnon and Durand [3] . They conducted an experi- we have seen in ® gure 5. Thus, the formation of a stable
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1065Chevron structure Ð stability of formation

values of d. In ® gure 4 (c), for example, the smectic layer
tilt angle d~0.05 rad results in an extensive energy
p̀lateau’ centred around zero net displacement, which
means that there is little or no shearing force present at
the cell surface. The energy of a periodic pinning term
representing the energetics of surface melting would trap
any chevron structure if it were already present (and not
necessarily only symmetric chevrons). This means that
the study of chevron or tilted layer formation closer to
TA C is particularly important, since it serves to elucidate
the criteria which determine which of the two structures
forms and whether there is any transition between them.

Figure 5. The e� ect of adding the layer positional anchoring
The authors would like to acknowledge the ® nancialenergy to that shown in ® gure 3(c). This is su� cient to pin

the zero displacement structure, i.e. the chevron structure support of the EPSRC and Sharp Laboratories of
is stable. Europe Ltd.
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